1	(a)	A geometric progression starts	4	16	
		Work out the next term.			[1 mark]
		Answer			

The first three terms of a geometric progression are $\frac{2}{3}$ $\frac{4}{9}$ $\frac{8}{27}$

Circle the fourth term.

[1 mark]

10 81 14 81 16 81 $\frac{32}{81}$

3

A is an arithmetic Here are the first t					
	13	16	19	22	
G is a geometric Here are the first t					
	2	4	8	16	
	nth	term of A = 8	3th term of G		
Work out the value	e of <i>n</i> .				[4 marks

4 (a) The first three terms of a geometric progression are $\frac{\sqrt{5}}{2}$ $\frac{5}{4}$ $\frac{5\sqrt{5}}{8}$

Work out the next term.

[1 mark]

- Answer
- **4 (b)** The *n*th term of a sequence is $(2 + \sqrt{3})^n$

Show that the third term is $26 + 15\sqrt{3}$

[3 marks]